
OPEN SOURCE VS. CLOSED SOURCE SOFTWARE:

TOWARDS MEASURING SECURITY

Guido Schryen
International Computer Science Institute

1947 Center Street. Suite 600
Berkeley, CA 94704, USA

+1 510 666 2972

schryen@gmx.net

Rouven Kadura
RWTH Aachen University

Templergraben 64
52062 Aachen, Germany

+49 241 8096184

kadura@inbox.com

ABSTRACT

The increasing availability and deployment of open source

software in personal and commercial environments makes open

source software highly appealing for hackers, and others who are

interested in exploiting software vulnerabilities. This deployment

has resulted in a debate “full of religion” on the security of open

source software compared to that of closed source software.

However, beyond such arguments, only little quantitative analysis

on this research issue has taken place. We discuss the state-of-the-

art of the security debate and identify shortcomings. Based on

these, we propose new metrics, which allows to answer the

question to what extent the review process of open source and

closed source development has helped to fix vulnerabilities. We

illustrate the application of some of these metrics in a case study

on OpenOffice (open source software) vs. Microsoft Office

(closed source software).

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics – product metrics,

process metrics

General Terms

Measurement, Security

Keywords

Open source software, Closed source software, Security, Metrics

1. INTRODUCTION
Over the last few decades we have got used to acquiring software

by procuring licenses for a proprietary, or binary-only, immaterial

“object”. We have, then, come to regard software as a good we

have to pay for – be it for either personal or commercial use – just

as we would pay for material objects, such as electronic devices,

or food. However, in more recent years, this widely cultivated

habit has begun to be accompanied by a model, which is

characterized by software that comes with a compilable source

code (open source code). Often, such a source code is free of

charge and may be modified and/or redistributed. The family of

software of this kind is referred to as the umbrella term “open

source software”. When discussing this alleged innovation in

software distribution, we are reminded by Glass [10] that,

essentially, free and open source software dates right back to the

origins of the computing field, as far back in fact as the 1950s,

when all software was free, and most of it open.

The current application fields of open source software are

manifold. Internet programs, such as the mail transfer agent

Sendmail, the Web server Apache, the operating system Linux,

the database MySQL, and the office package OpenOffice are

some of the most popular examples. Comprehensive repositories

for open source applications, which are already successfully

competing with today’s binary-only software (closed source

software), are provided by the open source software development

websites http://sourceforge.net and http://freshmeat.net, the latter

maintaining a large index of Unix and cross-platform software.

The increasing availability and deployment of open source

software in personal and commercial environments makes open

source software appealing for hackers, and others who are

interested in exploiting software vulnerabilities. These security

flaws become even more dangerous when software is not applied

in a closed context, but interconnected with other systems and the

Internet (this argument is also valid for closed source software).

Naraine [22] reports a study by The Mitre Corp., according to

which there are more than 230 open source software packages

already in use, even for critical operations, within U.S. federal

government agencies and departments. In order to appropriately

tackle security concerns regarding the applied packages, the U.S.

Department of Homeland Security initiated the so-called

Vulnerability Discovery and Remediation, Open Source

Hardening Project, which was part of a broad federal initiative to

perform daily security audits of approximately 40 open-source

applications, including Linux, Apache, and MySQL. All these

developments show that open source software has definitely

arrived in the world of important and critical software

environments that need security protection against attacks.

Interestingly, Li et al. [19] find that the portion of security

vulnerabilities related to the total bugs fixed has even increased in

both software “Mozilla” and “Apache”. The discussion on open

source security becomes even more relevant when open source

software packages are themselves deployed as security

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.

 2016

instruments, such as virus scanners, intrusion detection systems,

password safes or “single sign-on” systems [4]. However, the

discussion of whether obscurity outperforms tranparency in terms

of security is as old as the frequently referenced work of

Kerckhoffs [15].

Picking up the discourse on comparing the security of open source

software with that of closed source, one might argue that the

former is inherently more secure due to its communal writing and

review process. On the other hand, Fisher [7] reminds us that, in

2002, researchers found several vulnerabilities in the open source

software “OpenSSL toolkit”, all of which were buffer overruns –

the most common and preventable flaws in software. Developers

can also place back doors in open source software deliberately.

Although there is a plethora of articles in the popular on-line

press, the observation of Payne [26] that there has been little

discussion of this in the academic literature is still valid.

Frequently, discussions and arguments are polarizing, and we

believe that Herbert Thompson hit the mark when saying “When

folks talk about Linux and Windows security, a lot of religion gets

involved.” ([21], p. 27). Furthermore, we also need to consider

that a security validation might be biased depending on the

person, role or organization that performs the security analysis.

For example, Messmer [21] reports that Security Innovation

caused an uproar when it asserted in a study that a Web server

based on open source code had twice as many security

vulnerabilities recorded for it in 2004 as a comparable Microsoft-

based Web server did. According to Messmer, this study was

financed by Microsoft.

An unbiased discussion of open source and closed source security

is necessary for a validation of the arguments of both open source

advocates and closed source advocates. More specifically, we

should not primarily address the question of whether open source

or closed source software is securer, but should rather focus on

the conditions under which open source development and closed

source development contribute to enhanced security, in order to

give hints about the reasons for flaws, and on how to prevent them

in the future. For example, Li et al. [19] empirically find for

Mozilla and Apache that, against the belief that buffer overflows

are the most common form of security vulnerabilities, semantic

bugs cause more than 70% of vulnerabilities.

Summing up, it is helpful, if not necessary, to transparently

measure and rate the security of software – be it open source or

closed source software [33]. As Bellovin [5], p. 96, quotes Lord

Kelvin, “If you can not measure it, you can not improve it.”

However, measuring security is a challenging task, because

security is somehow invisible: the more secure a system is, the

less uproar occurs. Despite an increasing number of quantitative

research papers on measuring software security in the past years,

it is still true what Witten et al. [32], observed in 2001: what the

discussion on software security specifically lacks is appropriate

metrics, methodology and hard data.

This paper addresses this research gap and contributes to the

quantification of (open source and closed source) software

security by (a) analyzing limitations of metrics and models

defined in previous research, (b) proposing new metrics, which

measures to what extent the review process of open source and

closed source development has helped to fix vulnerabilities, and

(c) applying the metrics in a case study on OpenOffice (open

source software) vs. Microsoft Office (closed source software).

The rest of this article is organized as follows: In Section 2, we

provide an overview of the recent discussion. Then, in Section 3,

we analyze models proposed in the literature. Section 4 presents

and discusses the new metric. The data used for the application of

the proposed metric in the case study are presented in Section 5.

Section 6 provides our empirical results, before we conclude.

2. RECENT DISCUSSION
The discussion on open source and closed source software is

affected by the presence of several different understandings. It

becomes even more unclear when several open source licenses are

mentioned, or further notions, such as “free software”, pop up.

However, (not only) in the context of the impacts of software

models on security, does it seem reasonable to precisely define

what open source software is and whether we can identify several

categories which need to be treated differently in the security

context. Therefore, we briefly clarify these issues. This also helps

us to unfold and discuss the security arguments in favor of and

against open source software before we present proposed models

and empirical findings on measuring software security.

2.1 Terms and Definitions
In any of the understandings the authors are aware of, the

availability of source code to the public is a precondition for

software being denoted as “open source software”. Beyond this

requirement, the Open Source Initiative (OSI) has defined a set of

criteria that software has to comply with [25]. The definition

particularly includes permission to modify the code and to

redistribute it. However, it does not govern the software

development process in terms of who is eligible to modify the

original version. For example, one option would be to allow

anyone to include source code and to upload it to the software

repository (this style of development is referred to as “bazaar

style” by Raymond [27], another would be to supervise the

modification process by leaving the integration of modification

proposals up to “wizards”; this traditional, hierarchical

development style is denoted as “cathedral” by Raymond [27].

The implementation of this modification procedure might have an

impact on the security of the software, so that a detailed

discussion of open source security would need to consider this

issue. Summing up, it is important to distinguish between “the

product” open source software and its development process. With

regard to the latter, we focus on the implementation phase and do

not regard other phases in the software development process.

A plethora of OSD-compliant licenses have come into operation,

such as the Apache License, BSD license, and GNU General

Public License (GPL), which is maintained by the Free Software

Foundation (FSF). The FSF [9] provides a definition of “ ‘free

software’ [as] a matter of liberty, not price.” In contrast to the

OSD definition, the FSF explicitly focuses on the option of

releasing the improvements to the public (freedom 3), thereby

rejecting a strong supervision of the modification process. More

specifically, the definition says: “If you do publish your changes,

you should not be required to notify anyone in particular, or in

any particular way.” Similar to the discussion of what open or

free software is, we need to define what “closed software” is.

Does it comprise all that software that is non-open in a particular

context, or does it simply mean that software is distributed in a

2017

binary-only form? It might be useful in the context of security

evaluation to further specify different types of “closed” software.

The categorization of software and its development process as

“open source software (development)” or “free software

(development)” in contrast to “closed source software

(development)” reflects approaches through the developer’s lens

and specifies the type of development. Complementarily, one

could also adopt a software user’s point of view by differentiating

between software that needs to be paid for and software for which

no fee applies. This dimension takes the pricing model into

account. The resulting classification scheme corresponds to a two-

dimensional matrix, which is illustrated (with real-world

examples) in Table 1.

Table 1. Classification of software

 Open source Closed source

Free of

charge

Linux, Apache

Web server
Adobe Acrobart Reader

Subject to

charge
MySQL MS Windows OS

2.2 The Debate on Open Source Security
In the debate on the security of open source and closed source

software, a set of arguments is repeatedly presented. We present

and discuss those arguments that seem to arise most frequently.

While there is consensus that opening source code to the public

increases the potential number of reviewers, its impact on finding

security flaws is controversially debated. Proponents of open

source software stress the strength of the resulting peer review

process [26] and argue in the sense of Raymond [27] that, “Given

enough eyeballs, bugs are shallow.” (p. 19). This strength of the

review process is assumed to make finding bugs easier and more

likely. Beside the argument of an increased number of reviewers,

proponents also claim that, for each reviewer, vulnerabilities in

closed source software are harder to find than those in software

whose source code is readable. However, opponents comment that

only techniques differ ([27], p. 67f). For example, closed source

software can be disassembled. They further worry that open

source code might attract skilled programmers who are actively

seeking flaws but who eschew any efforts to find flaws in closed

source software. In this context, source code of new software

(version), which has not been inspected by many reviewers, is

assumed to be particularly endangered.

Interestingly, both parties essentially agree that open source

basically makes it easy to find vulnerabilities; they only differ in

their conclusions with regard to the resulting impact on security.

With regard to the availability of an increased number of

reviewers, it is countered that not all reviewers tend to have

similar experience and expertise. In contrast, experienced

reviewers in companies are believed to be even better skilled in

finding flaws. The reason for this bias is that often reviewers do

not only need to know programming languages but also need to

have further skills, such as network or cryptographic skills. For

example, Payne [26] mentions a vulnerability found in some

implementations of the Secure Shell remote login system protocol

version 1.5. Finding this vulnerability required not only an

understanding of the protocol itself, but also of advanced issues

relating to cryptology. Furthermore, it is queried whether the

actual number or reviewers is really as high as assumed: Levy

[18] remarks “Sure, the source code is available. But is anyone

reading it?”, and Viega [31] guesses that many potential

reviewers do not inspect the code because they believe that others

have already done so. Summarizing, advocates of closed source

software believe that the closeness of software, which follows the

principle “security by obscurity”, allows security flaws to be

hidden, at least until a patch is publicly available [8]. The authors

doubt that this argument is a strong one, since it is difficult, if not

impossible, to hide the source code during the time the software is

in operation. A salient example is the accidentally published

source code of Diebold voting machines on the Internet in 2003

[29]. This source code had been used by voting machines in 37

states of the U.S. Although this source code was certainly

involved in critical operations, it was published, even without any

criminal efforts being necessary. While this source code was

readable for anybody, vulnerabilities could also be detected by

scientists, which initiated a public debate. However, in cases

where a source code is only available to a few criminals, code

hiding may even be counterproductive [8].

With regard to the detection of security flaws in software, it

should be equitably noted that not all vulnerabilities are revealed

by the source code, be it open or closed. Some flaws might be due

to design decisions, but documentations on design are not always

available. Other vulnerabilities can infiltrate software if the

compiler used to generate binary code is insidiously modified. In

this case, the source code does not reveal these vulnerabilities.

Thompson [30] demonstrates this principle with C code examples,

where even the source code of the compiler does not disclose any

malicious elements, although these are integrated into the binary

version of this compiler.

Payne [26] argues that security flaws in open source software can

be fixed more quickly than those of closed source software,

because the user community is not dependent on a company’s

schedule to release a patch. It can rather control the activities to

fix vulnerabilities by itself. However, Payne [26] also notes that

the impact of the availability of source code on security might also

depend on the open source model used. For example, the (open

source) cathedral model would allow essentially anyone to detect

vulnerabilities, but not to remove them, because the patching

process is regulated and needs time, which can then be used by

attackers to exploit the (unpatched) vulnerabilities.

The discussion on security presented above involves a lot of

“religion“[21] and is also characterized by general attitudes

towards open source and closed source software. However, in

order to enlighten the impact of open source on security, we

propose the application of measurements, which allow for a fair

comparison of open source and closed source software. In the next

section, we discuss metrics that have been proposed in the

literature and that would support such measurements.

3. REVIEW: QUANTITATIVE MODELS
In the literature, a number of quantitative models for the

measurement of security of software systems have been proposed.

These models have often be related to reliability and

dependability in terms of nomenclature and methodologies [12,

13, 16]. In this section we briefly present the most important

security-related models, focussing on security breaches and

vulnerabilities. Models that address the economics of disclosing

vulnerabilities (see, for example, [23, 28]), are beyond the scope

2018

of our work. Finally, we identify the need for further research by

summarizing the drawbacks and limitations of existing models

and metrics.

Security breaches are incidents, which are due to security

vulnerabilities. Adopting a quantitative model of reliability,

Littlewood et al. [20] and Kimura [16] use a probabilistic model

for the empirical security of software by representing the

cumulative number of security breaches as a function with the

elapsed time as an independent variable. The model assumes the

random variable time up to the next intrusion to be exponentially

distributed. However, the authors make no assumptions on the

development of the rate parameter λ.

In cases where the total effort in finding vulnerabilities is not

linear in time, for example due to a changing number of reviewers

with different skills, the elapsed time as the independent variable

seems inappropriate and would need to be substituted by the total

effort [20]. Another modification of the basic model refers to

evaluating the security breaches by considering the cumulative

reward gained by the attackers. Jonsson and Olovsson [13]

perform a practical intrusion test on a distributed UNIX computer

system and collect data related to the difficulty of causing security

breaches. On the basis of these data, they formulate the hypothesis

that the occurrence of security breaches can be split into three

phases based on the attackers’ behavior: the learning phase, the

standard attack phase, and the innovative attack phase. They

further find statistical evidence that the times between consecutive

breaches during the standard attack phase are exponentially

distributed with a constant rate parameter λ using the

(independent) variable attacking worker time. Thus, their findings

support the (homogeneous) model of Littlewood et. al [20].

Similar to the observations of Johnsson and Olovsson [13]

regarding the development of security breaches, Alhazmi et al. [2,

3] assume that the development of vulnerability discovery, which

is a precondition for any intentionally induced security breach,

can be split up into three different phases, in which the usage

environment and vulnerability detection effort change. In phase 1,

the software testers gather sufficient knowledge of the system to

break into it successfully. In phase 2, the discovering of

vulnerabilities will be most rewarding for both white hat and

black hat finders. Finally, in phase 3, the vulnerability detection

effort will then start shifting to the succeeding version of the

software. These phases form an “S” shape that is assumed to

follow the principle that the vulnerability discovery rate is linear

in both the momentum gained by the market acceptance of the

product and in the saturation due to a finite number of

vulnerabilities. Let y(t) be the total number of vulnerabilities

found in period [0,t], A a constant of proportionality, and B the

total number of vulnerabilities that would eventually be found in

the software, then Alhazmi et al. (2005) consequently assume the

vulnerability discovery rate to be given by the differential

equation)(yBAy
dt

dy
−= , resulting in

1+
=

−ABtBCe

B
y . Using

data for both commercial (five versions of Windows) and open-

source systems (two versions of Red Hat Linux), Alhazmi et al.

[2] find statistical evidence for their model for both closed source

software and open source software. Interestingly, following the

assumption of the model that the total number of eventually found

vulnerabilities is given by B, it provides a procedure for

determining B and, thereby, for determining the number of still

undetected vulnerabilities. Comparing their figures of B (rounded

up) with the current numbers on detected vulnerabilities

(bracketed), as provided by the U.S. National Vulnerability

Database Version 2.0, we get these figures: Windows 95: B=49

(46), Windows 98: B=66 (91), Windows XP: B=88 (257),

Windows NT: 153 (234), Windows 2000: 163 (345), Red Hat

Linux 6.2: 123 (64), and Red Hat Linux 7.1: 163 (36). The gaps

between predicted and current figures show that the number of

detected vulnerabilities of some systems are strongly

underestimated in the model of Alhazmi et al. [2]. Therefore, their

model needs to be re-evaluated with particular regard to

approximating the development of detected vulnerabilities in

phase 3.

As mentioned above, time-based models become inappropriate

when the total effort that is spent on detecting vulnerabilities is

not linear in time. A model that considers this issue is presented

by Alhazmi and Malaiya [1], who assume the effort to detect

vulnerabilities of a software system to depend upon the number of

computers on which the particular software is installed. More

specifically, they define the effort E as E = (U i
i= 0

n

∑ × Pi) , where

Ui is the total number of users of all systems at the period of time

I, and Pi is the percentage of the users using the system. They

further assume, in analogy to their time-based model [2], that the

vulnerability detection rate is proportional to the fraction of

remaining vulnerability. On the basis of these assumptions, they

hypothesize that the number of vulnerabilities is given by

y = B(1− e−λvuE) , where λvu is a parameter and B represents

the number of vulnerabilities that would eventually be found.

They find statistical evidence for the validity of this effort-based

model for the operating systems Windows 98 and NT 4.0.

Like Littlewood et al. [20], Rescorla [28] adopts a model

provided by the literature on software reliability. More

specifically, he uses the probabilistic G-O model presented by

Goel and Okumoto [11], which models the number of

vulnerabilities over time with a non-homogenous Poisson process.

This model assumes the expected value of the Poisson process to

be proportional to the number of undiscovered vulnerabilities at

time t. The model also assumes that all vulnerabilities will

eventually be found. On the basis of the non-homogenous Poisson

process that the G-O model features, Rescorla [28] fits an

exponential of the form
Θ− /tAe to the curve of vulnerability.

Then, the total number of vulnerabilities N can be computed

by Θ= AN , where A is a constant.

However, in his empirical analysis of vulnerabilities of (both open

source and closed source) operating systems, namely Windows

NT 4.0, Solaris 2.5.1, FreeBSD 4.0 and RedHat Linux 7.0,

Rescorla [28] finds no (strong) statistical evidence that the G-O

model appropriately approximates the number of detected

vulnerabilities over time.

Having reviewed the literature on the quantitative security

analysis in the context of “open source versus closed source

software”, we can identify the following problems and limitations:

� There is only little literature on measuring software. Those

metrics and models that have been applied to security are

mostly adopted from the research field of reliability.

Particularly, to the knowledge of the authors, no models have

2019

been developed that address the discourse on open source

versus closed source security. There is a strong need for the

development of metrics and models dedicated to measuring and

comparing software security.

� The set of empirical investigations is small and mainly focuses

on the analysis of operating systems. We assume that these

limitations are strongly related to the scarcity of security data.

� Beside the problem of data scarcity, many authors struggle with

the availability and quality of data, particularly in terms of

incompleteness and a low level of granularity.

� Up to now, software security has been addressed like an

“atom”. Only very few authors split it up into components.

Particularly in the context of security assessment of open

source development versus closed source development, it seems

reasonable to zoom in on the “bundle security assessment” to

analyze the extent to which elements of security are supported

by these different types of software development. One option

would be to follow Payne’s [26] path by separately considering

security requirements, such as availability and confidentiality.

However, we propose the following of a more software-

technological dimension, which differentiates according to the

type of vulnerability source. For example, vulnerabilities can

occur due to software design, due to implementation faults,

such as buffer overflows, or due to software environment

problems, such as the usage of faulty libraries or operating

system calls. By employing this classification, we would be

able to assess the appropriateness of the software development

type with regard to security (maintenance) in more detail.

� An assumption of many models is the finite number of

vulnerabilities that a software features or that are detected over

the software’s lifetime. This assumption needs to be scrutinized

when we accept the option that patches not only eradicate

vulnerabilities, but also create new ones.

� Most existing models on security measurement are related to

the number of detected vulnerabilities or exploitations.

However, this is only one aspect of the quantification of

software security, which needs to be complemented by further

evaluations. For example, the assessment of the severity of

vulnerabilities is no less important.

� The demand for developing models that address software

security has led the security measurement community

underemphasizing the discussion of metrics to be used in the

models.

The next section addresses the challenge of quantifying software

security by proposing a new metric that allows to measure to what

extent the review process of open source and closed source

development has helped to fix vulnerabilities.

4. NEW SECURITY METRICS
As vulnerabilities are the root of exploitations and security

breaches, the measurement of vulnerabilities is the right point at

which to start quantifying software. However, the number of

vulnerabilities does not necessarily reflect the level of security of

a program. For example, if program A features only one

vulnerability that is easy to discover, can be exploited

systematically and causes severe damage, then A can be felt to be

less secure than a program B that features ten vulnerabilities, each

of them being extremely hard to discover, can be exploited only in

the presence of specific conjunctures, and does not cause any

severe harm. Therefore, we propose weighting vulnerabilities. Let

n be the number of vulnerabilities in time window [0;t] and vsi,

i=1..n, be the (normalized) severity of vulnerability i with

]1;0[∈ivs . Then, the cumulated weighted vulnerability

CWV(t) in time window [0;t] is calculated by summing up all vsi,

i.e. ∑ =
=

)(

1
)(

tn

i ivstCWV . A practical example for the “severity

of vulnerabilty” concept is the NIST Common Vulnerability

Scoring System (CVSS), which assigns a (aggregated) score

between 0 and 10 to each vulnerability (normalization is

straightforward here). If we further categorize the vulnerabilities

according to their type j, such as “buffer overflow” or “faulty

library”, we can compute type-specific CWVs by

∑ =
×=

)(

1
)(

tn

i iijj vstCWV δ with 1=ijδ , if vulnerability i

belongs to type j and 0=ijδ else.

This segregation of vulnerabilities according to their type allows

us to identify the most critical (types of) security defects, so that

we can discuss the impact of open source and closed source

development on security broken down into defect types. We

would like to stress that the categorization of vulnerabilities can

occur along different dimensions; for example, it can be based on

the type (buffer overflows, cross-site scripting etc.) that cause

vulnerabilities, but also on the resulting impact (violation of

integrity, confidentiality etc.) of intrusions or on the impact on

business value [6]. In the literature, mainly the first option is

adopted, but we also find it interesting to discuss the other paths;

however, this discourse is out of scope of this paper.

However, the availability of scores and the resulting opportunity

to derive conclusions on a metric scale level is dangerous, when

scores were improperly determined on the basis of ordinal

rankings, thereby reflecting only a seemingly accuracy. The

Common Vulnerability Scoring System Version 2 Calculator,

which is applied in the CVSS, implements such a misleading

procedure. A way out of this problem would be to remain on

ordinal level by providing vulnerability severity classes (for

example low, medium, high) and to simply count the

vulnerabilities for each class without aggregating the numbers.

We, then, obtain the cumulated unweighted vulnerability

CUVk(t), with k being the severity class, by

∑ =
=

)(

1
)(

tn

i ik

k tCUV δ with 1=ikδ , if vulnerability i belongs to

severity class k and 0=ikδ else. Analogously to the calculation

of CWV, we can also determine CUVk specific to vulnerability

type j (for example buffer overflow) by ∑ =
=

)(

1
)(

tn

i ijk

k

j tCUV δ

with 1=ijkδ , if vulnerability i belongs to severity class k and to

vulnerability type j, and 0=ijkδ else.

However, we still need to carefully observe the procedure with

which classes are used. For example, the NIST National

Vulnerability Database does not only provide a score for each

vulnerability, but also a vulnerability class/ranking.

Unfortunately, “[…] these qualitative rankings are simply

mapped from the numeric CVSS scores”

(http://nvd.nist.gov/cvss.cfm).

2020

The metrics discussed so far relate to the vulnerabilities that have

been revealed during the process of reviewing software. However,

they do not consider the extent to which the review process has

helped to fix the vulnerabilities. As this issue is particularly

relevant to the discussion of whether open source software or

closed source software is more secure in practice, we now address

it in more detail.

With regard to the elimination of vulnerabilities by the provision

of (security) patches, it seems less reasonable to measure the

number or intensity of patches, because this provides no

information on the number of covered vulnerabilities or on the

ages of covered vulnerabilities. It seems rather appropriate to

compute (statistical data on) the reaction time between detection

and elimination of a vulnerability, weighted by the level of

severity of the vulnerability. It might also seem reasonable to

record how many of the detected vulnerabilities are unpatched:

Let i be the index of the event that a vulnerability is either

announced or patched, ti be the corresponding point of time,

it
pv be the (possibly severity-weighted) number of detected and

patched vulnerabilities in the time window [0;ti], and let
it

uv be

the corresponding (possibly severity-weighted) number of

unpatched vulnerabilities. Then, we define the patch index at time

tn (
nt

PI) by

ii

i

n

tt

t
n

i

ii

n

t
uvpv

uv
tt

t
PI

+
×−= ∑

−

=

+

1

1

1)(
1 .

The sum corresponds to the shaded area in Figure 1, the quotient

1/tn normalizes].1;0[∈
nt

PI It should be noted that t1 corresponds

to the point in time where the first vulnerability is detected.

Because of the normalization being inherent in PI , PI=0 would

imply that, for all announced vulnerabilities, a patch is already

provided at the day of announcement. In contrast, PI=1 would

imply that none of the announced vulnerabilities has been

patched.

Figure 1. Visualization of patch index (PI)

It should also be noted that the proposed patch index does not

reflect a security level at a specific point of time, but rather

mirrors the level of community patching activities with regard to

both the number of unpatched vulnerabilities in relation to all

vulnerabilities and the time having been consumed for fixing;

therefore, the patch index is relative in nature. At the beginning,

the level does not provide any valuable data, but it becomes a

significant factor after some time has gone by and several

vulnerabilities have been detected. However, the proposed patch

index is time-invariant what needs to be discussed or modified in

future research:

� The shaded rectangles in Figure 1 are considered regardless of

their horizontal position. This issue might lead to

overemphasizing the meaning of early (unpatched)

vulnerabilities, particularly when the sizes of consecutive

rectangles are comparably small.

� The treatment of exposed vulnerabilities is time-invariant in

that the patch index does not consider whether the exposed

vulnerabilities were just recently announced or whether they are

already known for a long time.

5. DATA
In order to exemplify and apply the proposed patch index, we

apply it to data gained for the closed source software “Microsoft

Office” (considering only Word, PowerPoint and Excel and

starting with the version released in 2002) and the open source

software “OpenOffice” (excluding the database program

introduced in version 2.0) for the period from 1 October 2001 to

11 March 2008. The reasons for choosing these software bundles

are rooted in the fact that (1) they provide essentially the same

functionality, (2) comprehensive security data is available, and (3)

they are well-known in the software (security) community.

We consider only those vulnerabilities that have been accepted as

Common Vulnerabilities and Exposures (CVE) entries by the

CVE editorial board, which was itself created by the MITRE

corporation (http://cve.mitre.org). Each of these vulnerabilities

has a unique identifier, e.g. CVE-1999-0067, which is used as a

reference in many other vulnerability databases

(http://cve.mitre.org/compatible/vulnerability_management.html).

Among these databases, we use one of the most comprehensive,

the NIST “National Vulnerabilty Database” (http://nvd.nist.gov/),

which provides full CVE database functionality and offers

sophisticated search options. We obtain further details of the

vulnerabilities from the MITRE website, the US-CERT

Vulnerability Notes Database, Microsoft Security Bulletins,

OpenOffice.org and “The Open Source Vulnerability Database”

(http://osvdb.org).

6. EMPIRICAL RESULTS
We first address the number of vulnerabilities found for each

software. Table 2 shows the numbers, categorized according to

their severity. The table entries correspond to what, in Subsection

“Security vulnerabilities”, is referred to as “cumulated unweighted

vulnerability CUVk“, with k being the severity class. The severity

score follows the NIST Common Vulnerability Scoring System

(CVSS), the categorization of types also follows NIST, which

adopts a subset of the Common Weakness Enumeration (CWE)

list that provides a comprehensive categorization of vulnerability

types and is maintained by the MITRE corporation.

The central findings regarding the announced vulnerabilities are:

� MS Office has attracted about 7 times more vulnerabilities than

OpenOffice has. However, we have to consider that probably

more vulnerabilities in OpenOffice than in MS Office might

have been existed, detected, potentially discussed in forums,

and finally removed, before they could have become a CVE

vulnerability.

� Both software bundles have suffered only minor low-severity

vulnerabilities; medium- and high-severity vulnerabilities have

occurred almost equally often.

2021

Table 2. Number of vulnerabilities (CUVk) of

MS Office (M) and OpenOffice (O)

Vulnerability severity class k

Low

(0-3.9)

Medium

(4.0-6.9)

High

(7.0-10.0)

Sum

M O M O M O M O

3 2 50 6 55 8 108 16

Having analyzed the announced vulnerabilities, we now address

the question of the extent to which the review process of open

source development has helped to fix vulnerabilities. For this

purpose, we apply the patch index, as defined in Section 4. We do

not apply any weighting of vulnerabilities, because CVE data are

essentially on ordinal scale level, as discussed in Subsection 4.

Figure 2 shows the development of the patch index for both

software bundles.

Figure 2. Patch indices of MS Office and OpenOffice

Both curves feature a strong decrease at the onset, before leveling

off. The strong decrease of both curves is due to the fact that, in

the beginning, the presence of unpatched vulnerabilities is

“overemphasized”, as the total number of vulnerabilities is low. In

order to weaken this early impact on the overall development of

the patch index, it might be reasonable to integrate some kind of

“weighting vulnerabilities” in future work.

Interestingly, although the total numbers of vulnerabilities found

in MS Office is about 7 times higher than the OpenOffice-related

number, the (levelled off) patch index of MS Office does not

reveal a comparably weak performance in patching vulnerabilities.

With regard to MS Office, on average, about 27% of all

announced vulnerabilities have not been patched, the

corresponding value of OpenOffice is 18%. However, these

results do not necessarily mean that MS Office vulnerabilities are

slower patched than those of OpenOffice. By contrast, a simple

statistical analysis of patch times reveals that, on average, MS

Office vulnerabilities (the median is 67.5 days, the mean is 87

days) are more quickly patched than OpenOffice vulnerabilities

(the median is 85 days, the mean is about 87.4 days). The reasons

for these divergent results are that (1) the patch index is invariant

in which vulnerability is patched and (2) the patch index also

considers both the total number of vulnerabilities detected and the

total number of vulnerabilities patched. Interestingly, in the period

under consideration, the overall proportions of unpatched

vulnerabilities are almost equal (MS Office: 14/108 ≈ 13%,

OpenOffice: 2/16 = 12.5%).

This investigation demonstrates that – in contrast to statistical

data about patch times – the proposed patch index is capable of

considering both the extent to which a certain type of software

development creates vulnerabilities and removes vulnerabilities.

Therefore, the patch index represents a metric that allows for

comprehensively measuring and comparing practical software

security. However, the observed patch times need to be

interpreted very carefully for two reasons: (1) Data refer to one

investigation only. (2) Patch times for both closed and open

source development heavily depend on the concrete patching

procedures in the responsible organizations or communities.

Therefore, it would be necessary to consider whether the

particular open source software development is realized in bazaar

or in cathedral style (according to OpenOffice.org [24], cathedral

style seems to dominate the development of OpenOffice).

7. DISCUSSION AND OUTLOOK
Discussions in the literature show that the increasing availability

and the deployment of open source software in personal and

commercial environments has resulted in a debate “full of

religion” on the security of open source software compared to that

of closed source software. This debate reveals the much more

comprehensive problem of assessing security, which has

traditionally only rarely been conducted on a quantitative level.

Although some methods and metrics have been proposed and

applied in empirical research, the methodology is at an early stage

and is mainly adopted from the fields of reliability and

dependability, without careful investigation into the extent to

which it can be adopted or the question of whether new models

and metrics are required. For example, one assumption of some

models is the finite number of vulnerabilities that software

features or that are detected over the software’s lifetime. This

assumption needs to be scrutinized when we accept the option that

patches not only eradicate vulnerabilities, but also create new

ones. Furthermore, most existing models on security measurement

are related to the number of detected vulnerabilities or

exploitations. However, it is only one aspect of the quantification

of software security. For example, the assessment of the severity

of vulnerabilities is no less important. Beyond the problems

related to the scarcity of appropriate models, we also face the crux

that the set of empirical investigations is small and mainly focused

on the analysis of operating systems. We assume that these

limitations are strongly related to the scarcity of security data.

This paper starts to bridge the sketched gaps by proposing metrics

that allow for quantitatively comparing software development

styles with regard to resulting security. The application of the

proposed metrics, for which reliable data are available, shows

that, overall, OpenOffice has been more secure than MS Office in

terms of vulnerabilities. We suggest refining the metrics and

extending the analysis onto more software bundles. A further step

beyond such activities would be automated security evaluation,

2022

which enables us to continuously monitor (the development of)

software security and, particularly, to empirically answer the

question of when, and to what extent, which software

development style leads to more secure software. More

specifically, we find it appropriate to analyze which vulnerability

types (with regard to their roots) are best addressed by which

software development style. We would then try to group software

into components, each of which is homogeneous in the roots of

potential vulnerabilities. For example, all input validation tasks

could be integrated in an I/O module. This module would then be

developed according to the development style that best addresses

the roots of such vulnerabilities. It should be noticed that the

categorization of vulnerabilities does not necessarily needs to be

done along the roots of vulnerabilities. It can also occur along the

resulting impact (violation of integrity, confidentiality etc.) of

intrusions or along the impact on business value [6].

8. REFERENCES
[1] Alhazmi, O. and Malaiya, Y. Quantitative Vulnerability

Assessment of Systems Software”, Annual Reliability and

Maintainability Symposium, 1995, 615-620.

[2] Alhazmi, O., Malaiya, Y. and Ray, I. Security Vulnerabilities

In Software Systems: A Quantitative Perspective in Data and

Applications Security 2005, LNCS 3654, 2005, 281-294.

[3] Alhazmi, O., Malaiya, Y., Ray, I. Measuring, analyzing and

predicting security vulnerabilities in software systems,

Computers & Security, 26, 3 (2007), 219-228.

[4] Ardagna, C.A., Damiani, E., Frati, F. and Reale, S. Adopting

Open Source for Mission-Critical Applications: A Case

Study on Single Sign-On. In Damiani, E., Fitzgerald, B.,

Scacchi, W., Scotto, M. and Succi, G. (Eds.) Open Source

Systems, Springer, Boston, 2006, 209-220.

[5] Bellovin, S.M. On the Brittleness of Software and the

Infeasibility of Security Metrics. IEEE Security & Privacy, 4,

4 (2006), 96.

[6] Chen, Y., Boehm, B. and Sheppard, L. Value Driven

Security Threat Modeling Based on Attack Path Analysis. In

Proceed. of the 40th Hawaii International Conference on

System Sciences, 2007.

[7] Fisher, D. Open source: a false sense of security? eWeek, 19,

39 (2002), 20-21.

[8] Ford, R. Open vs. Closed Software. ACM Queue,5, 1 (2007).

[9] Free Software Foundation (FSF) The Free Software

Definition, 2007.

[10] Glass, R.L. A look at the economics of open source. Comm.

of the ACM, 47, 2(2004), 25-27.

[11] Goel, A.L. and Okumoto, K. Time-Dependent Error-

Detection Rate Model for Software and Other Performance

Measures, IEEE Transactions on Reliability, 28, 3(1979),

206-211.

[12] Jonsson, E. and Olovsson, T. On the Integration of Security

and Dependability in Computer Systems. In IASTED

International Conference on Reliability, Quality Control and

Risk Assessment, 1992.

[13] Jonsson, E. and Olovsson, T. A Quantitative Model of the

Security Intrusion Process Based on Attacker Behavior. In

IEEE Transactions on Software Engineering, 23, 4 (1997),

235-245.

[14] Jonsson, E., Strömberg, L. and Lindskog, S. On the

functional relation between security and dependability

impairments. In Proceedings of the 1999 Workshop on New

Security Paradigms, 2000, 104-111.

[15] Kerckhoffs, A. La cryptographie militaire. Journal des

sciences militaires IX, 1883, 161–191.

[16] Kimura, M. Software vulnerability: definition, modelling,

and practical evaluation for e-mail transfer software.

International Journal of Pressure Vessels and Piping, 83, 4

(2006), 256-261.

[17] Laprie, J. C. (ed.) Dependability: Basic Concepts and

Terminology, Springer, Austria, 1992.

[18] Levy, E. Wide open source”,

http://www.securityfocus.com/news/19, 2000.

[19] Li, Z., Tan,L., Wang, X., Lu, S., Zhou, Y. and Zhai, C. Have

things changed now? – An empirical study of bug

characteristics in modern open source software. In

Proceedings of the 1st workshop on Architectural and system

support for improving software dependability , 2006, 25-33.

[20] Littlewood, B., Brocklehurst, S., Fenton, N., Mellor, P.,

Page, S., Wright, D., Dobson, J., McDermid, J., and

Gollmann, D. Towards Operational Measures of Computer

Security, Journal of Computer Security,2, 3 (1993), 211-229.

[21] Messmer, E. Open source vs. Windows: security debate

rages. Network World, 22, 26 (2005), 26-27.

[22] Naraine, R. DHS backs open-source security, eWeek, 23, 3

(2006), 20.

[23] Nizovtsev, D. and Thursby, M. To disclose or not? An

analysis of software user behaviour. Information Economics

and Policy, 19, 1 (2007), 43-64.

[24] OpenOffice.org Active Projects of OpenOffice.org, 2008,

http://projects.openoffice.org/index.html#components.

[25] Open Source Initiative (OSI) The Open Source Definition,

2006.

[26] Payne, C. On the security of open source software. Inform.

Systems Journal, 12, 1 (2002), 61-78.

[27] Raymond, E.S. The Cathedral and the Bazaar: Musings on

Linux and Open Source by an Accidental Revolutionary,

O'Reilly, Beijing, China, 2001.

[28] Rescorla, E. Is finding security holes a good idea? Workshop

on Econ. and Info. Security, 2004.

[29] Rubin, A. Brave New Ballot, Morgan Road Books, New

York, USA, 2006.

[30] Thompson, K. Reflections on Trusting Trust. Comm. of the

ACM, 27, 8 (1984), 761-763.

[31] Viega, J. The Myth of Open Source Security, 2000.

[32] Witten, B., Landwehr, C. and Caloyannidis Does open

source improve system security?, IEEE Software, 18,

5(2001), 57-61.

[33] Wolfe, M. See Past Self-Proclaimed Experts’ Open-Source

Security Evaluations, Comm. of the ACM, 50, 5 (2007).

2023

